List of Experiments:

❖ CIVIL ENGINEERING MATERIAL LAB

- 1. Identification of Materials by Visual Inspection
- 2. To determine Normal Consistency, Initial & Final setting time, Specific Gravity, fineness & compressive strength of Cement (IS: 269-1967)
- 3. To Study the Utilization of Fly Ash
- 4. To Study the Procedure for Testing of Stone
- 5. To Study the Fiber Reinforced Concrete
- 6. To Study the Properties and Use Of Different Glasses
- 7. To Study the Different Aluminum and Steel Sections
- 8. To Study the Manufacture and Use of Concrete Hollow Blocks
- 9. To Determine Compressive and Tensile Strength of Timber Parallel and Perpendicular to Grain
- 10. To Study the Properties and Uses of Kota Stone
- 11. To determine the Water Absorption and Tolerance Limit of Bricks

*** ENGINEERING GEOLOGY LAB**

- 1. Physical Properties of Minerals
- 2. Physical Properties of Rocks
- 3. Identification of Minerals in Hand Specimen
- 4. Identification of Rocks in Hand Specimen
- 5. Identification of Geological features through wooden Models
 - a) Structural Geological Diagrams
 - b) Petrological Diagrams
 - c) Engineering Geological Diagrams
- 6. Interpretation of Geological Map (10 Nos.)
- 7. Dip & Strike Problems (8 Nos.)

***** FLUID MECHANICS LAB

- 1. To verify the Bernoulli's theorem.
- 2. To calibrate the Venturimeter.
- 3. To calibrate the Orificmeter.
- 4. To determine Metacentrie Height.
- 5. To determine Cc, Cv, Cd of an orifice.

- 6. To determine Cd of a mouthpiece.
- 7. To determine Cd of a V-notch.
- 8. To determine viscosity of a given fluid.
- 9. Bye Pass.

CONCRETE TECHNOLOGY LAB

- 1. To determine the fineness of Cement by sieving through a 90 micron I.S. Sieve.
- 2. To determine the flexural strength of Concrete.
- 3. To determine Soundness of cement by Le-chatelier apparatus.
- 4. To determine the specific gravity of fine aggregate (sand) by Pycnometer.
- 5. To determine the bulking of fine aggregate and to draw curve between water content and bulking.
- 6. To determine the fineness modulus of coarse aggregates and fine aggregates by sieve analysis.
- 7. To determine the workability of given concrete mix by slump test.
- 8. To determine the workability o given fresh concrete mix by compaction factor test.
- 9. To determine the optimum dose of super plastsizers by by Flow table test.
- 10. To design concrete mix of M-20 grade without admixture in accordance with I S recommendations.
- 11. To design concrete mix of M-40 grade with admixture in accordance with I S recommendations.
- 12. To determine the Elstic Modulus of Concrete.
- 13. To determine the Permeability of Conerte.
- 14. NDT

❖ SURVEYING LAB

- 1. Ranging and Fixing of Survey Station.
- 2. Plotting Building Block by offset with the help of cross staff.
- 3. To determine the magnetic bearing of a line
- a. Using surveyor's compass
- b. Using prismatic compass
- 4. Measurement and adjustment of included angles of traverse using prismatic compass.
- 5. To determine the reduced levels using Tilting Level/Automatic Level.
- 6. To determine the reduce levels in closed circuit using Dumpy Level.
- 7. To carry out profile leveling and plot longitudinal and cross sections for road.
- 8. To carryout temporary adjustment of Theodolite & Measurement of horizontal angle.

- a. By method of repetition.
- b. By method of Reiteration.
- 9. To determine the tachometric constant.
- 10. To determine the horizontal and vertical distance by tachometric survey.
- 11. To study the various minor instruments.

*** HYDRAULICS LAB**

- 1. To determine the minor losses.
- 2. To determine the friction factor.
- 3. To determine Cd of Broad crested wier.
- 4. To verify the momentum equation.
- 5. To determine the discharge of venturimeter.
- 6. To determine Manning's & Chezy's coefficient of roughness for the bed of a given flume.
- 7. To plot characteristics curve of hydraulic jump.
- 8. To plot characteristics curve of Pelton Wheel.
- 9. To plot characteristics curve of Centrifugal Pump.

***** BUILDING DRAWING LAB

- 1- To plan and draw working drawing of a Residential building with following detail.
- (a) Site plan
- (b) Foundation plan
- (c) Plan
- (d) Two sectional elevations
- (e) Front elevation
- (f) Furniture plan
- (g) Water supply and sanitary plan
- (h) Electric fitting plan
- 2- To design and draw a Primary Health Center
- 3- To design and draw a Primary School
- 4- To design and draw a Rest House
- 5- To design and draw a Post Office
- 6- To design and draw a Bank
- 7- To design and draw a College Library

***** MATERIAL TESTING LAB

- 1. Tensile Strength Test Mild Steel and HYSD bar
- 2. Compressive Strength Test Mild Steel and Cast Iron
- 3. Compressive Strength Test Cement Cubes and Concrete Cubes
- 4. Compressive Strength Test Bricks
- 5. Compressive Strength Test Wooden Blocks
- 6. Hardness Test Rockwell Hardness and Brinell Hardness
- 7. Impact Test Izod and Charpy
- 8. Modulus of Rupture of Wooden Beam
- 9. Fatigue Test
- 10. Spring Test
- 11. Torsion Test

❖ ENVIRONMENTAL ENGINEERING DESIGN & Lab. –I

- 1. To determine the pH of the given sample of water.
- 2. To determine the turbidity of the given sample of water
- 3. To determine Total Solids of the given water sample.
- 4. To determine the Total Dissolved Solids of the given water sample.
- 5. To find out conductivity of the given water sample.
- 6. To determine hardness of the given water sample.
- 7. To find out chloride of the given water sample.
- 8. To determine alkalinity of the given water sample.
- 9. To find out acidity of the given water sample.
- 10. To determine hardness of the given water sample.
- 11. To determine the optimum dose of alum by Jar test.
- 12. To study various water supply Fittings.

❖ GEOTECHNICAL ENGG.-I LABORATORY

- 1. Grain size distribution by Sieve Analysis
- 2. Determination of water content by Pycnometer.
- 3. Determination of specific Gravity by Pycnometer.
- 4. Determination of liquid limit by Casagrande's apparatus.
- 5. Determination of liquid limit by cone penetrometer.

- 6. Determination of plastic limit
- 7. Determination of shrinkage limit
- 8. Determination of field density by core-cutter
- 9. Determination of field density by sand replacement method
- 10. Determination of compaction properties by standard Proctor Test Apparatus
- 11. Determination of C-Ø values by Direct Shear Test Apparatus
- 12. Determination of Unconfined Compressive Strength by unconfined compression Test Apparatus

❖ SURVEYING LAB. −II

- 1. To measure the horizontal and vertical angles by Theodolite.
- 2. To determine the Height of an object by trigonometric leveling (Instruments in same vertical plane).
- 3. To determine the Height of an object by trigonometric leveling (Instruments in different vertical planes).
- 4. To shift the R.L. of known point by double leveling.
- 5. To measure and adjust the angles of a braced quadrilateral.
- 6. To prepare a contour map by indirect contouring.
- 7. To prepare the map of given area by plane tabling.
- 8. To determine the Azimuth of a given line by ex-meridian observations of Sun.
- 9. Survey Camp (including exercise on triangulation, topographic, or project survey) with maximum duration of 10 days.

*** STRUCTURAL ENGINEERING LAB**

- 1. Deflection of a truss
- 2. Clark-Maxwell reciprocal theorem with truss
- 3. Funicular polygon for flexible cable
- 4. Analysis of redundant frame
- 5. Deflection of curved members
- 6. Buckling of columns
- 7. Clark-Maxwell reciprocal theorem with simply supported beam
- 8. ILD for deflection in a steel beam using unit load method
- 9. ILD for support reaction using Muller-Breslau Principle
- 10. Unsymmetrical bending.
- 11. Two hinged and three hinged arches.

❖ GEOTECHNICAL ENGG. DESIGN AND LABORATORY. – II

- 1. To determine the differential free swell index of soil.
- 2. To determine the grain size distribution of fine grained soil by Hydrometer.
- 3. To determine the CBR of soil.
- 4. To determine the compressibility parameters of soil by consolidation test.
- 5. To determine the swelling pressure of soil.
- 6. To determine the permeability of soil by constant and falling head methods.
- 7. To determine the shear strength parameters of soil by tri-axial test.
- 8. Design problems based different units of theory syllabus.

❖ ENVIRONMENTAL ENGINEERING LAB. & DESIGN – II

- 1. To determine the pH of the given sample of sewage.
- 2. To determine Total Solids of the given sewage sample.
- 3. To determine the Total Dissolved Solids of the given sewage sample.
- 4. To find out Total Settle-able Solids of the given sewage sample.
- 5. To determine Total Suspended Solids of the given sewage sample.
- 6. To find out the Quantity of Dissolved Oxygen present in the given water sample by Winkler's Method.
- 7. To determine Biochemical Oxygen Demand exerted by the given wastewater sample.
- 8. To find out Chemical Oxygen Demand of the waste water sample.
- 9. To study various Sanitary Fittings.

*** ROAD MATERIAL TESTING LAB**

- 1. Aggregate Impact test
- 2. To determine the flakiness index & Angularity number test of given sample of aggregate.
- 3. To determine fineness modulus of a given sample of coarse aggregate.
- 4. Los angles abrasion test
- 5. Aggregate crushing value test
- 6. Specific gravity and water absorption test of aggregate.
- 7. Standard tar viscometer test
- 8. To determine the elongation index for given sample of aggregate.
- 9. Ductility test
- 10. To determine the softening point for give sample of bitumen.

- 11. Marshell stability test
- 12. Float test

DESIGN of FOUNDATIONS LAB

- 1. Design of isolated shallow footings, combined footings, raft foundations.
- 2. Design of pile foundations.
- 3. Design of wells and cassions.
- 4. Design of machine foundation.
- 5. Design of retaining structures etc.