OPERATING INSTRUCTIONS FOR ANDERSON'S BRIDGE

OBJECT:

To measure self inductance of a coil using Anderson's Bridge.

APPARATUS:

Anderson's Bridge has been designed on a training board New Tech Type NTI – 117. It consists three fixed resistances R_1 , R_2 , R_3 . R_1 is connected in between A and B. R_2 is connected in between B and C. Thus R_1 and R_2 form two ratio arms, R_3 is connected in between A and D and a variable resistance R_4 is connected in unknown arm C and D. The inductance (L) to be measured is also connected in the same arm. Thus R_4 and L are in series. A set of seven capacitors $C = C_1$, C_2 , C_3 , C_4 , C_5 , C_6 , C_7 and resistance r in two steps of (i) X 100 Ω upto 1K Ω (ii) X 1K Ω upto 10 K Ω are provided on the board. Fixed frequency oscillator is connected in the bridge two terminal provided for this. A headphone or galvanometer fitted with diode is joined in between two terminals marked for this purpose. Three inductances L_1 , L_2 and L_3 are also provided on the board. L_1 is between first and second terminal, L_2 is between second and third terminal, L_3 is in between third and fourth terminal.

THEORY:

When Anderson Bridge is balanced in the sound in head phone or deflection in galvanometer fitted with diode is minimum. The potential at E & F is same then:

$$\therefore \frac{P}{Q} = \frac{R}{S}$$
$$\therefore \frac{R_1}{R_2} = \frac{R_3}{R_4}$$

And if P = Q or $R_1 = R_2$

$\mathbf{L} = \mathbf{C}\mathbf{R}_3 \left(\mathbf{R}_2 + 2\mathbf{r}\right)$	(1)
---	-----

<u>PROCEDURE:</u>

- (1) Connect one self inductance say L2 (second and third terminals) to the sockets provided across the symbol of the Coil in the bridge circuit.
- (2) Connect a leclanche cell or lead accumulator in place of oscillator and Galvanometer at place of head phone. Adjust R4 so that Zero deflection is obtained in Galvanometer keeping r at 0 resistance.
- (3) Now disconnect leclanche cell and at its place connect fixed frequency oscillator. Head phone or Galvanometer fitted with diode is connected at its proper place.
- (4) Set suitable value of C and by changing r obtain minimum sound in head phone or minimum deflection in Galvanometer. Record the value of C and r in O.T.
- (5) Changing value of C repeat step (4) a number of times. Record the value of C and r in O.T.
- (6) Calculate L using formula (1) given in theory.

OBSERVATIONS : Given Values :

$$\begin{split} R_1 &= R_2 = R_3 = 1 K \Omega \\ C_1 &= \dots \ \mu F, \ C_2 = \dots \ \mu F, \ C_3 = \dots \ \mu F \\ C_4 &= \dots \ \mu F, \ C_5 = \dots \ \mu F, \ C_6 = \dots \ \mu F \ \text{and} \ C_7 = \dots \ \mu F \end{split}$$

 $L_1 = \ldots \ldots mH, L_2 = \ldots mH, L_3 = \ldots mH$

S. No.	Value of C	Resistance	Inductance
	μF	r Ohms	L mH
1			
2			
3			

CALCULATIONS:

 $L = CR_3 (R_2 + 2r)$ Henry

$$=$$
 CR₃ (R₂ +2r) X 10³ mH

RESULT:

Inductance of the given:

Coil = mH Standard value = mH

PRECAUTIONS:

- (1) Initially the output of frequency oscillator should be kept low and near null point it should be increased.
- (2) If head phone is used these should be silence in the neighbouring.
- (3) For greater sensitivity of the bridge resistances in the four arms should be nearly same.
- (4) Plug type Resistance box or P.O. box should not be used.
- (5) For obtaining balance point $L > CR_2R_3$.
- (6) For inductance L_1 is of low value C_1 , C_2 , C_3 capacitors should be used. For inductance L_2 is medium value C_3 , C_4 , C_5 . Capacitors should be used and for L_3 Capacitors C_5 , C_6 , C_7 should be used to get null point and better results.

Fig. (1) Panel Diagram

Fig. (2) Connections for ANDERSON BRIDGE
