Insulated Gate Bipolar Transistor (IGBT) ST2701

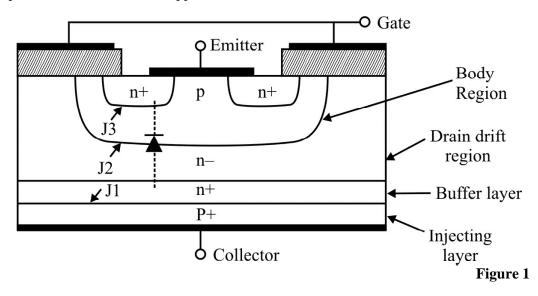
> Learning Material Ver 1.1

An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, © + 91-731 4211100, ⊠: info@scientech.bz, ⊕: www.ScientechWorld.com

Certificate

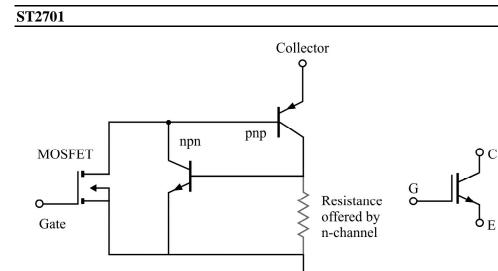
Standard:	ISO 9001:2008	
Certificate Registr. No	85 100 001 10182	
	TÜV Rheinland India Pvt. Ltd.:	
Certificate Holder:	Scientech Technologies P	vt. Ltd.
	Unit 1: 94 – 101, Electronics Complex, Pa Indore – 452 010, Madhya Pradesh, India	ardeshi Pura, a
	Unit 2: 90 – 91, Electronics Complex, Pai Indore – 452 010, Madhya Pradesh, India	
Scope:	Design, Manufacture of Electronic Tes Instruments, Training Products for Ele Education and Providing Technology	ectrical & Electronics
	An audit was performed, Report No. 1018 furnished that the requirements according are fulfilled.	
	The due date for all future audits is 04-10	(dd.mm).
Validity:	The certificate is valid from 2010-12-13 u	ntil 2013-12-12.
		amendle .
	Bangalore, 2010-12-20 The validity of this certificate is subject to timely completion of Surveillance audits as agreed in the Contract. The Validity of the Certificate can be verified uncer <u>vvvvv tour com</u> with the	The Certification Body of TÜV Rheinland India Pvt. Ltd. Identification No. 910502/1953
(BIO37NABCERICO		TÜV Rheinland [®] Precisely Right.

Insulated Gate Bipolar Transistor ST2701 Table of Contents


1.	Introduction	4
2.	Theory	5
3.	Experiment	
4.	Study of the characteristics of IGBT	8
5.	Data Sheet	11
6.	Warranty	13
7.	List of Accessories	13
8.	List of other Trainers available from us are	14

Introduction

Insulated Gate Bipolar Transistor (IGBT) is a compact, ready to use experimenalt board. This is useful for students for the study of the characteristics of IGBT and to understand its different operating regions. It can be used as a stand alone unit with external DC power supply.


Theory

The insulated gate bipolar transistor (IGBT) combines the positive attributes of BJTs and MOSFETs. BJTs have lower conduction losses in the 'On'-state, especially in devices with larger blocking voltages, but have longer switching times, especially at turn-'Off' while MOSFETs can be turned on and off much faster, but their on-state conduction losses are larger, especially in devices rated for higher blocking voltages. Hence, IGBTs have lower on-state voltage drop with high blocking voltage capabilities in addition to fast switching speeds and has become the most favored power device in Industrial application.

The vertical cross sectional structure of an IGBT is shown in Figure 1 having four alternate p-n-p-n layers with three terminals Emitter, Collector and Gate. A heavily doped p+ substrate has a lightly doped n-type drift region grown on to it by epitaxial process. Then the p-type emitter is diffused with two subsequent n-type layers over doping windows. Two silicon dioxide layers are then deposited, and deposition of the metal forms an interconnected gate as shown in Figure 2

The performance of an IGBT is closer to that of a BJT rather than a MOSFET. The circuit symbol of an IGBT are shown in the below Figure 2. When the gate is positive with respect to the emitter and this voltage is beyond the threshold value, an n-channel is induced in the p-region of a MOSFET. These charge carriers forward bias the base-emitter junction of the p-n-p transistor and holes are injected into the n-type drift region.

These injected holes cross the reverse biased collector junction of the p-n-p transistor and constitute the collector current. This collector current is the base current for the np-n transistor, which is properly biased in the active region. This amplifying collector current flows from the n-p-n transistor to the base of the p-n-p transistor, hence a positive feedback exits and the device turns ON.

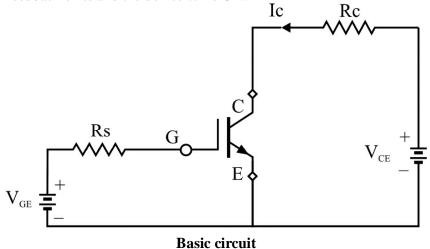
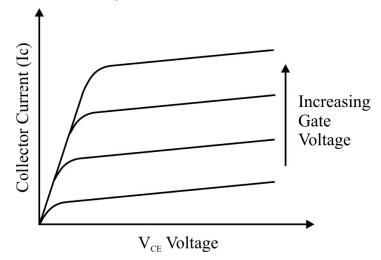



Figure 3

When a positive voltage is applied to the collector terminal with the gate short circuited ($V_{GE} = 0$) to the emitter terminal, the upper junction (J2) becomes reverse biased and the device operates in forward blocking mode i.e. there is no current flow between collector and emitter. If we set a positive voltage to V_{GE} & V_{CE} then a current (Ic) will flow in collector terminal. For a value less then the threshold level the collector current of an IGBT is 0mA.If we hold V_{GE} constant and increasing the V_{CE} then Ic will reach a saturation level. So with increase in V_{CE} and keeping the V_{GE} to

(a) Equivalent Circuit

the threshold value the collector current (Ic) will reach the saturation level. Further increase in Gate voltage the value of collector current will increase. The V-I characteristics of the IGBT is given below.

Output V-I Characteristics of IGBT

Figure 4

Experiment

Objective : Study of the characteristics of IGBT

Equipments Needed :

- 1. Power Electronics board **ST2701**.
- 2. Digital Multi-meter.
- **3.** 2 mm patch cords.

Circuit diagram :

Circuit used to plot the characteristics of an IGBT is shown in Figure 5.

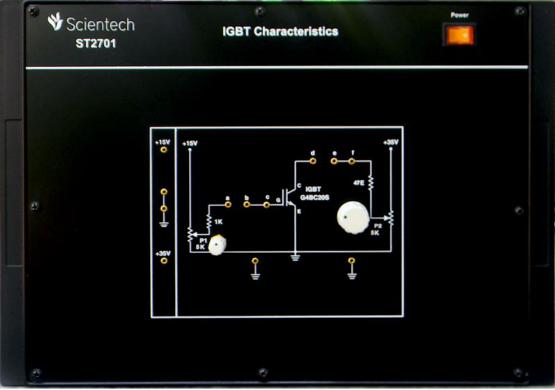


Figure 5

Procedure :

- **1.** Rotate the potentiometer 'P1' fully in clockwise direction and 'P2' fully in counter clockwise direction.
- 2. Connect Ammeter between point d and e to measure collector current Ic (mA).
- 3. Connect a 2mm patch cord between point 'a' and 'b'.
- 4. Connect voltmeter between point c and ground to measure the Gate voltage V_{GE} and between point f and ground.
- 5. Switch 'On' the power supply.
- 6. Vary the potentiometer ' $P_{1'}$ in counterclockwise direction to set the gate voltage V_{GE} (between 4.8V and 5.6V).
- 7. Vary the potentiometer 'P2' in clockwise direction so as to increase the value of collector-emitter voltage V_{CE} from 0 to 35V in step and measure the corresponding values of collector current Ic for different constant value of gate voltage V_{GE} in an Observation Table 1.
- **8.** Rotate the potentiometer 'P2' fully in the counterclockwise direction and potentiometer 'P1' fully in clockwise direction.
- 9. Repeat the procedure from step 6 for different sets of gate voltage VGE.
- 10. Plot a curve between collector-emitter voltage current (V_{CE}) and Collector current Ic using suitable scale with the help of observation Table 1. This curve is the required collector characteristic.

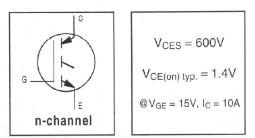
Observation Table 1 :

S.No.	Collector Voltage	Collector Current Ic (mA) at constant value of Gate Voltage V _{GE} (volt)								
	Voltage V _{CE}	V _{GE =} V	V _{GE =} V	$\mathbf{V}_{\mathbf{GE}} = \mathbf{V}$						
1.										
2.										
3.										
4.										
5.										
6.										
7.										
8.										
9.										
10.										
11.										
12.										
13.										
14.										
15.										
16.										

Data Sheet

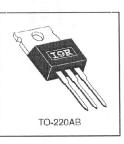
PD - 91597A

International **TCR** Rectifier


INSULATED GATE BIPOLAR TRANSISTOR

Features

- Standard: optimized for minimum saturation voltage and low operating frequencies (< 1kHz)
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-220AB package



Standard Speed IGBT

Benefits

- · Generation 4 IGBTs offer highest efficiency available
- IGBTs optimized for specified application conditions
- Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V
$I_{\rm C} @ T_{\rm C} = 25^{\circ}{\rm C}$	Continuous Collector Current	19	
Ic @ Tc = 100°C	Continuous Collector Current	10	A
СМ	Pulsed Collector Current ①	38	
ILM	Clamped Inductive Load Current @	38	
V _{GE}	Gate-to-Emitter Voltage	± 20	V
EARV	Reverse Voltage Avalanche Energy 3	5.0	mJ
$P_D @ T_C = 25^{\circ}C$ Maximum Power Dissipation		60	w
P _D @ T _C = 100°C	Maximum Power Dissipation	24	7
TJ	Operating Junction and	-55 to + 150	
T _{STG} Storage Temperature Range			°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)]
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case		2.1	
Recs	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
R _{0JA}	Junction-to-Ambient, typical socket mount		80	
Wt	Weight	2.0 (0.07)		g (oz)

www.irf.com

1 4/17/20(

IRG4BC20S

International **ICR** Rectifier

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V(BR)CES	Collector-to-Emitter Breakdown Voltage	600	-	-	V	$V_{GE} = 0V, I_C = 250 \mu A$	
V(BR)ECS	Emitter-to-Collector Breakdown Voltage ④	18	-	-	V	$V_{GE} = 0V, I_{C} = 1.0A$	
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage	-	0.75	-	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
(-	1.40	1.6		I _C = 10A	$V_{GE} = 15V$
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	-	1.85	-	v	I _C = 19A	See Fig.2, 5
OL(ON)		_	1.44	_		$I_{\rm C} = 10{\rm A}$, $T_{\rm J} = 150^{\circ}{\rm C}$	
V _{GE(th)}	Gate Threshold Voltage	3.0	-	6.0	~	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	-	-11	-	mV/°C	$V_{CE} = V_{GE}, I_C = 250 \mu A$	
9fe	Forward Transconductance S	2.0	5.8	-	S	$V_{CE} = 100V, I_C = 10A$	
lana	Zero Gate Voltage Collector Current		-	250	μA	$V_{GE} = 0V, V_{CE} = 600V$	1
ICES			-	2.0		$V_{GE} = 0V, V_{CE} = 10V, T_{e}$	J = 25°C
			-	1000	1 - C	$V_{GE} = 0V, V_{CE} = 600V,$	Г _Ј = 150°С
IGES	Gate-to-Emitter Leakage Current	-	-	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics	@ T	J = 25°C (U	unless otherwise	specified)
---------------------------	-----	-------------	------------------	------------

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Qg	Total Gate Charge (turn-on)	-	27	40		I _C = 10A		
Q _{ge}	Gate - Emitter Charge (turn-on)	_	4.3	6.5	nC	V _{CC} = 400V See Fig. 8		
Q _{gc}	Gate - Collector Charge (turn-on)	-	10	15		$V_{GE} = 15V$		
t _{d(on)}	Turn-On Delay Time	-	27	-				
tr	Rise Time	-	9.7	-	ns	$T_J = 25^{\circ}C$		
t _{d(off)}	Turn-Off Delay Time	-	540	810	115	$I_{C} = 10A, V_{CC} = 480V$		
tı	Fall Time		430	640		$V_{GE} = 15V, R_G = 50\Omega$		
Eon	Turn-On Switching Loss	-	0.12	-		Energy losses include "tail"		
Eoff	Turn-Off Switching Loss	-	2.05	-	mJ	See Fig. 9, 10, 14		
Ets	Total Switching Loss	-	2.17	3.2				
t _{d(on)}	Turn-On Delay Time	-	25	-		$T_{\rm J} = 150^{\circ}{\rm C},$		
tr	Rise Time	_	13	-	ns	$I_{C} = 10A, V_{CC} = 480V$		
t _{d(off)}	Turn-Off Delay Time		760	-	115	$V_{GE} = 15V, R_G = 50\Omega$		
t _f	Fall Time		780		,	Energy losses include "tail"		
Ets	Total Switching Loss		3.46	1-	mJ	See Fig. 11, 14		
LE	Internal Emitter Inductance	-	7.5	-	nH	Measured 5mm from package		
Cies	Input Capacitance	_	550	-		$V_{GE} = 0V$		
Coes	Output Capacitance		39		pF	V _{CC} = 30V See Fig. 7		
Cres	Reverse Transfer Capacitance		7.1	1_		f = 1.0MHz		

Notes:

- 0 Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- ② $V_{CC} = 80\%(V_{CES}), V_{GE} = 20V, L = 10\mu H, R_G = 50\Omega,$ (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.

4	Pulse	width	\leq	80µs;	duty	factor	≤	0.	19	%
---	-------	-------	--------	-------	------	--------	---	----	----	---

S Pulse width 5.0µs, single shot.

www.irf.com

2