OPERATING INSTRUCTIONS FOR DETERMINATION OF LOW RESISTANCE BY KELVIN'S DOUBLE BRIDGE

OBJECT:

To determine very low resistance by Kelvin's double bridge.

APPARATUS:

Kelvin's double bridge super sensitive galvanometer, Battery eliminator and copper wire whose resistance is to be found.

THEORY:

Let Y be the unknown and X standard known resistance of same order. R_1 , R_2 , R_3 , R_4 are non inductive resistances of higher values as compared to X, Y.

The Balance is obtained when the points B and D are at the same potential. The current at A divides into I_1 and Ix in arms R_1 and X respectively and I_3 passes through R_3 , Potential drop on AD arm = I_1R_1 . The sum of potential drops across X and $R_3 = Ix X + I_3R_3$

But potential at B and D are the same for no deflection in galvanometer, which implies that -

 $I_1R_1 = I_X X + I_3R_3$ (1)

Fig. (1)

Similarly,

P.D. across $R_2 = P.D.$ across $R_4 + P.D.$ across Y

or $I_1 R_2 = I_3 R_4 + I_x Y$ (2)

From (1) and (2) we get

$$I_X \quad X = I_1 R_1 - I_3 R_3$$
$$I_X \quad Y = I_1 R_2 - I_3 R_4$$

Dividing

$$\frac{\mathbf{Y}}{\mathbf{X}} = \frac{\mathbf{I}_{1}\mathbf{R}_{2} - \mathbf{I}_{3}\mathbf{R}_{4}}{\mathbf{I}_{1}\mathbf{R}_{1} - \mathbf{I}_{3}\mathbf{R}_{3}}$$
$$\frac{\mathbf{X}}{\mathbf{Y}} = \frac{\mathbf{R}_{2}\left[\mathbf{I}_{1} - \mathbf{I}_{3} \frac{\mathbf{R}_{4}}{\mathbf{R}_{2}}\right]}{\mathbf{R}_{1}\left[\mathbf{I}_{1} - \mathbf{I}_{3} \frac{\mathbf{R}_{4}}{\mathbf{R}_{1}}\right]}$$

But
$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
 or $\frac{R_4}{R_2} = \frac{R_3}{R_1} = K$

$$\therefore \frac{\mathbf{Y}}{\mathbf{X}} = \frac{\mathbf{R}_2 \begin{bmatrix} \mathbf{I}_1 - \mathbf{I}_3 \mathbf{K} \end{bmatrix}}{\mathbf{R}_1 \begin{bmatrix} \mathbf{I}_1 - \mathbf{I}_3 \mathbf{K} \end{bmatrix}}$$

 $\frac{Y}{X} = \frac{R_2}{R_1}$

or

or

This equation gives the value of Y in terms of known X_1R_1 , R_2 resistances.

PROCEDURE:

Refer to Fig. (1) and make connections accordingly.

- 1. Connect the unknown low resistance in place of Y.
- 2. Fix ratio $R_2 : R_1 = 1 : 1$.
- 3. Now vary standard resistance X so that on closing battery key K_1 and then galvanometer key K_2 null position in galvanometer is obtained. Calculate unknown resistance using formula (3).

4. Repeat the experiment with
$$\frac{R_2}{R_1} = \frac{1}{10}$$
 and $\frac{R_2}{R_1} = \frac{1}{100}$

and find the final mean value of Y.

OBSERVATIONS:

Ratio $\frac{R_2}{R_1}$	Value of Standard Resistance X Ohms	$Y = X \frac{R_2}{R_1}$	Final Value Y Ohm
1:1			
1:10			
1:100			

RESULT:

PRECAUTIONS:

- 1. Galvanometer should be of high sensitivity.
- 2. Short and thick copper wires should be used for connections if necessary.
- 3. Battery should supply sufficient current.

Fig. (2) Panel Diagram

Fig. (3) Connections for Kelvin's Double Bridge
