# OPERATING INSTRUCTIONS FOR MEASURE LOW RESISTANCE BY CROMPTON POTENTIOMETER

# **OBJECT:**

To measure low resistance by Crompton Potentiometer.

# **APPARATUS:**

Crompton potentiometer New Tech Type NTI - 501, two battery eliminators, two rheostats, two one way keys, one two way key, One Galvanometer, one known resistance of comparatively higher value and given small resistance.

## **THEORY:**

Let *I* current is passing through known resistance R of comparatively higher value R and small unknown resistance r. The balancing length corresponding to potential drop on R is  $l_1$ .



**Fig.** (1)

Where  $\sigma$  is potential gradient.

If balancing length corresponding to potential drop on  $(\mathbf{R} + \mathbf{r})$  resistance is  $l_2$ .

Then  $I(R + r) = \sigma l_2$  .....(2)

(2) / (1)  

$$\frac{R + r}{R} = \frac{l_2}{l_1}$$
or 
$$1 + \frac{r}{R} = \frac{l_2}{l_1}$$
or 
$$\frac{r}{R} = \frac{l_2 - l_1}{l_1}$$

or 
$$r = \frac{l_2 - l_1}{l_1} R$$
 .....(3)

Putting the values of  $l_1$ ,  $l_2$  and R in this formula the unknown low resistance r is calculated.

#### **PROCEDURE:**

- (1) Complete the connections as shown in Fig. (1).
- (2) Close the keys  $K_1$  and  $K_2$  put plug in 'a' gap of two way key K.
- (3) Note down the balancing length  $l_1$  for potential drop on resistance R.
- (4) Now take out plug from 'a' gap and put it in 'b' gap of two way key. Adjustments of Rheostats  $Rh_1$  and  $Rh_2$  should not be disturbed. Note down the balancing length  $l_2$  for potential drop on resistance (R + r).
- (5) Calculate the value of unknown small resistance r using formula:-

$$\mathbf{r} = \frac{l_2 - l_1}{l_1} \mathbf{R}$$

- (6) Different sets of observation are taken by changing currents in primary and secondary circuits.
- (7) Mean value of small resistance r is calculated.

### **OBSERVATIONS:**

| Sr. | Balancing length    | Balancing        | 1 - 1                                                    |
|-----|---------------------|------------------|----------------------------------------------------------|
| No. | $l_1$ for P.D. on R | length $l_2$ for | $\mathbf{r} = \frac{\iota_2}{2} \mathbf{r}_1 \mathbf{R}$ |
|     | Cm                  | P.D. on R Cm     | $l_1$                                                    |
|     |                     |                  | Ohm                                                      |
| 1.  |                     |                  |                                                          |
| 2.  |                     |                  |                                                          |
| 3.  |                     |                  |                                                          |
| 4.  |                     |                  |                                                          |
| 5.  |                     |                  |                                                          |

**CALCULATIONS:** 

Putting values of  $l_1$ ,  $l_2$  and R in the formula the value of unknown small resistance r is calculated in each set of observations. Then mean value of r is determined.

### **RESULT:**

The value of given small resistance as determined using Crompton potentiometer is = ...... Ohm.

### **PRECAUTIONS:**

- 1. The E.M.F. of the cell used in primary circuit should be kept more than E.M.F. of the cell in secondary circuit.
- 2. All the positive terminals should be connected to the same point (A) of the potentiometer.
- 3. Jokey should not be moved along the potentiometer wire.
- 4. Electrical connections should be tight.

|   |                    | ٥                                                      |                                      | 0                                             |  |  |
|---|--------------------|--------------------------------------------------------|--------------------------------------|-----------------------------------------------|--|--|
|   | NTI                | CROMPTON POTENTIOMETER                                 |                                      |                                               |  |  |
| 0 | + () A             | O GALVANOMETER O                                       | + O SECONDARY O -<br>C CIRCUIT - I D | Е 🔿 +                                         |  |  |
|   | PRIMARY<br>CIRCUIT |                                                        | FOR STANDARDISATION                  | SECONDARY<br>CIRCUIT - II<br>FOR UNKNOWN P.D. |  |  |
|   | - 🔿 в              |                                                        |                                      | F 🔿 -                                         |  |  |
| 0 | 0                  | ด<br>ขในแปลนในแปลแปลแปลแปลแปลแปลแปลแปลแปลแปลแปลแปลแปลแ |                                      |                                               |  |  |
|   |                    | 0                                                      |                                      | 2                                             |  |  |

Fig. (2) Panel Diagram

\*\*\*\*



Fig. (3) Connections for Crompton Potentiometer

\*\*\*\*\*