5. Determine the total power radiated by a small atternating line current element I_0 dl cos wt.

OR

- a) Discuss different control techniques to suppress electromagnetic interference.
- b) Explain the retarded potentials.

Roll	No		Tota BEE106	l Printed Pages : 4	
		TECH.ELECTRIC	AL & ELECTR	⊐ ONICS ENGG. ıne - 2016	
Time :	3 I	Hours]		[Total Marks 60	
Use	off	ollowing supporting i	material is permitte	ed during examination.	
1		Nil	2	Nil	
Vote:		Attempt any five q Each question car	•		
1.		Express the vector field $\vec{A} = xy^2 z \vec{a}_z + x^2 y z \vec{a}_y + xy z^2 \vec{a}_z$ in cylindrica and spherical coordinates at (3,-4,5).			
			OR		
1.	a)	Verify the divergen	ice theorem for ve	ctor	
		$\vec{A} = \rho^2 \cos^2 \phi \vec{a}_{\rho} +$	$z \sin \phi \vec{a}_{\phi}$ over clo	sed suface of the cylinde	
		$0 \le z \le 1, \rho = 4.$		(8)	
04BEE106		6	1	Contd	