Roll No.

Total Printed Pages: 5

02BTC102

B.TECH/M.TECH(INT)

II-SEM, (Main/back) Examination, May/June-2016 SUB: ENGG MATHEMATICS-II

Time: 3 Hours)

[Total Marks 60

Use of following supporting material is permitted during examination.

١.	Nil	

Attempt any five questions selecting one question from each unit

2. Each question carry equal marks.

UNIT-I

- A sphere of constant radius k passes through the origin O and meets 1. the axes A, B, C; prove that the Locus of centroid of the:
 - Triangle ABC is sphere $x^2 + y^2 + z^2 = \left(\frac{2}{3}k\right)^2$

02BTC102

Contd...

b) Tetrahedron OABC is sphere $x^2 + y^2 + z^2 = \left(\frac{1}{2}k\right)^2$

OR

- 1. a) Find the equation to right circular cone with vertex at origin, axis the line $\frac{x}{z} = \frac{y}{-4} = \frac{z}{3}$ and which passes through the point (1, 1, 2).
 - b) Find the equation of right circular cylinder $\frac{x-2}{z} = \frac{y-1}{1} = \frac{z}{3}$ and which passes through (0, 0, 1)

UNIT-II

2. a) Find the rank of matrix:

$$A = \begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & 5 & -2 & 3 \\ 1 & 2 & 1 & 2 \end{bmatrix}$$

b) Find inverse of given matrix:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

OR

2. a) Find the solution of following equation.

$$x-y+2z=4$$
$$3x+y+4z=6$$
$$x+y+z=1$$

b) Show that the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & -3 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$

Satisfy cayley Hamlton theorem.

Contd...

UNIT-III

- 3. a) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$; prove that div $r^n\vec{r} = (n+3)r^n$ hence show that r^nr will be solenowed alor n=-3.
 - b) Evaluate $\int_{c}^{F.dr}$ where $f = xy\hat{i} + yz\hat{j} + zx\hat{k}$ and c is the curve $r = t\hat{i} + t^{2}\hat{j} + t^{3}\hat{k}$, t varying from -1 to +1.

OR

- 3. a) Find the value of $\nabla^2 r^n$ and show that $\nabla^2 \left(\frac{1}{r}\right) = 0$
 - b) If $f = e^{xyz}(\hat{i} + \hat{j} + \hat{k})$; find curl f.

UNIT-IV

4. Evaluate $\int_{c}^{c} [(3x^2 - 8y^2)dx + (4y - 6xy)dy]$ where C is the region bounded by parabola $y = \sqrt{x}$ and $y = x^2$ using Green's theorem.

02BTC102

4

Contd...

Find Fourier series for the function.

$$f(x) = x \cos x - \pi < x < \pi$$

UNIT-V

Solve the Charpits method.

$$p = (qy + z)^2$$

OR

Solve

a)
$$z - xp - yq = a\sqrt{x^2 + y^2 + z^2}$$

b)
$$p(1+q^2) = q(z-a)$$